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APPLICATION OF THE CONDITIONAL POPULATION-MIXTURE MODEL TO IMAGE SEGMENTATION

Stanley L. Sclove

University of Illinois at Chicago Circle

Chicago, Illinois

Abstract

The problem of image segmentation is consid-
ered in the context of a mixture of probability
distributions. A modification of the usual
approach to mixtures of distributions is employ-
ed, Parametric families of distributions are
considered, a set of parameter values being
associated with each distribution. In addition,
an identification parameter is associated with
each observation, indicating from which distri-
bution the observation arose. Thus, the segmen-
tation problem is cast as a problem of statisti=-
cal estimation. Segmentation algorithms are
obtained by applying a method of iterated maximum
likelihood to the resulting likelihood function,

1. Introduction

Consider a digital image, given as a set of

p-dimensional vectors Eij = (xlij’ cees xpij)’
1= 1,2,0.0,I, J=1,2,...,d.
Examples. (i) p = 3, X114 = red level, Xpiq =

green level, x = blue level of pixel {(i,J).
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(ii) p = 1 (monochromatic image), x X,, =

113 i
gray level of pixel (i,J).
The problem of image segmentation is, simply
stated, the problem of putting the pixels (i,J)
into groups (classes, clusters), i.e., the "seg-
ments."

Define a gegmenting as a partition of the

set of pixels, i.e., as a collection {Cl,...,Ck}

of disjoint sets such that each pixel belongs
to one and only one set C . Each set C_is a
gegment (cluster). Here €e shall assumf that
the integer k is specified in advance. (A modi-
fication of the algorithm allows some of the
segments to join or split, thereby permitting
fewer or more than k clusters to form. See Sec.

6.2 below.)
In what follows we shall write Xy rather
than xij’ using a single subscript i rather than

the double subscript ij for the pixels, even
though they are a two-dimensional array.

It seems reasonable to consider the follow=-
ing model for segmentation problems:
Assumption (1). With the g-th segment (g=1,..,k)
is associated a probability distribution with
probability density function (p.d.f.) hg(a).

The p.d.f.'s are generally unknown.

Assumption (2). With the i-th pixel (i=1,...,n=
1J) is associated a group (segment) identification
parameter) Y which is equal to g if and only if

pixel i belongs to segment g. Each pixel thus
gives rise to a pair (X,y) where X is observable
and y is not.

Remarks. (i) In the context of this model "seg-
mentation"is merely estimation of the parameters
v; for the n pixels. (ii) In regard to Assumption

(1), when we are working with some parametric
family, indexed by a parameter, say 8, then hg

takes the form hg(i) = h(;jgg). The parameters

are generally unknown. (iii) This model is a
population-mixture model.

It is convenient to reparemetrize. Replace
Yy by a k-vector gi which consists of k-1 zeros

and a single 1, the position of the 1 indicating
which segment pixel i belongs toj; i.e., gi has a
1l as its Yi-th element and O's elsewhere. The

p.d.f. of X., given 8., is
k
( =
f{x,]9,) Zg=legihg(xi), (1.1)

where 6 is the g-th element of 6, .
gi =i

2. The Probability Model

The model of Sec. 1 should be contrasted with
the usual population-mixture model, in which any
observation Zi is chosen from Population g with

probability = , so that in this standard popula~
tion-mixture flodel the p.d.f. of Ei is

3z amyaenym) = zz=1"ghg(§i)’ (2.1)
i=1,...,n. This standard mixture model has been
used for pixel classification; see, e.g., Eklundh,
Yamamoto, and Rosenfeld.® The purpose of the pre-
sent paper is to suggest the conditional mixture
model as an alternative and to present some algo-
rithms derived from it. Further discussion of the
model, in the context of statistical cluster analy-
sis, and further references are given by Sclove.

A likelihood approach, whether based on the
standard or the conditional mixture model, is
illuminating in that it can show how ad hoe opti=-
mality criteria (objective functions) which have
been proposed relate to likelihood functions in
particular probability models.

Note that (1.1) can be written as a product
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k .
Gy g (x)] 5% (2.2)

The form (2.2) is often more convenient, and we
shall use it in what follows.

flx. [8.) =
il

3. The Segmentation Algorithm

Using the form (2.2), one sees that the joint
p.d.f. of the zi's, given the gi's, is

n k egi

n 1 [n(x.;8.)] ="

islgsl B
The likelihood is to be maximized over all assign-
ments of pixels to segments and over all permis-
sible parameter values. Many ad hoe schemes can
be applied to this maximization problem. E.g.,
one way to maximize is to start with a given seg-
mentation, take each observation successively and
shift it to the first segment for which a shift
results in an increase in likelihood, and loop
through the data unitl no pixel changes segments.

The algorithm to be developed here is an
iterative, back-and-forth procedure. We first
maximize with respect to (w.r.t.) the 8's (hold-
ing the B's fixed at initial values), thenw.r.t.
the B's Tholding the 8's fixed at the values ob-
tained in the previous stage), thenagain w.r.t.
the 6's (holding the B's fixed at the values ob-
tained in the previous stage), ete. We stop when
no 6 changes, i.e., when no pixel changes seg-
ments, or when a specified amount of computer
time is used.

An alternative of starting the procedure is
to start with an initial segmentation rather than
with initial guesses of the g8's.

It is clear that, for fixed values of the

B's, say B's, the likelihood is maximized, for
each i, by taking
8 .
&l 0 otherwise .
(In case of ties an arbitrary choice is made.) 1In
other words, segmentation proceeds by allocating
pixel i to the group g for which the estimated
probability density of the observation x; is
largest.
Note that, having tentatively estimated the
8's at any stage, i.e., having tentatively segmen-
ted the image, estimation of the g8's is reduced
simply to ordinary maximum likelihood estimation
in the particular parametric family at hand.
This is & particular advantage of this approach.
Let T denote the set of Qi's and B the set of

ts. Let L{B,T) denote the likelihood. Let
)

S

max {h(x.38,)}
-1 "

1if h(x.;é ) =
1B 1ack

(3.1)

B
B(

the g-th stage of the iteration, and let T(s)
denote the value of T which maximizes L at the

Then T(s)

denote the value of B which maximizes L at

s=th stage of the iteration. maximizes
L(B(sz T) w.r.t. T, and B(S) maximizes L(B,T(s-l))

w.r.t. B. This back-and-forth maximization is an
example of the relaxation method (Southwell's
method); see Ortega & Rneinboldt? (pp. 21uff.) ana

Southwell.g’lo It is true that
L(B(S’IZT(S)) > L(B(SZT(S))

(SZT(S+1 (SZ T(S))

L(B M > L(B
That is, at no stage of the procedure can the
value of the likelihood decrease; however, there
is no guarantee of convergence to the global maxi-
mum (neither do alternative clustering algorithms
guarantee convergence to the global max of their
objective functions). To see how the procedure
can fail to converge to a global max, suppose it

happens that Le5) 208Ny 5 L3108y for a1 B, d

or 15 20510y 5 1808)n) for a1l T. Then the
procedure will terminate at the s-th stage, with-
out having necessarily reached the global max.
That is, if, having maximized w.r.t. one of the
variables B and T, we happen to find ourselves at
a (relative) max w.r.t. the other, we may not
reach a global max.

L. Application to Particular Distributions

Now we consider application of this general
method to particular families of distributions.
First we consider normal distributions with common
covariance matrix, for in this case it becomes
clear how the model establishes a link with some
existing clustering procedures.

L,1. Multivariate Normal Populations with Common
Covariance Matrix

In the case of normal populations with means
Eg’ g=l,...,k, and common covariance matrix %, the
likelihood takes the form

n k
-n/2
/ exp[- ) T 8ss yg,E)/E],

i=1 g=1

where the quadratic form q is given by

-np/2

(2m) |z alx; s

alxsu,z) = (x-u) 7 (x-p) s

the (Mahalanobis) distance between x and p in the
metric of L. Here {3.1) is equivalent to

)}

R 1 4if qfx,3p »Z) = min {a(x,
T (4.1)

BIPEY
.= 1<k *
gl 0 otherwise. -

That is, pixel i is assigned to that group to
whose tentatively estimated mean vector it is clo-
sest, where the distance is in the metric of the
tentatively estimated covariance matrix. Having
estimated the 6's, we have multivariate normal
observations arranged into groups; maximization
w.r.t, the p's and I is sccomplished by taking
the group mean vectors as estimates for the yu's,
and the within~groups sum-of-products matrix gives
the estimate of I. The procedure is iterated:

using new estimates Eg’ g€ =1,...,k, and I, the
rule (L4.1) is applied again. Then new u's and a

new I are calculated; etc. The Mahalanobis dis-
tances can be computed efficiently; see, e.g.,

Andersonl, p. 107.

Relationship with the zgodata procedure. This
scheme is a Mahalanobis-distance version of Ball

and Hall's isodata clustering procedure.g Isodata
prureeds as follows. One starts with tentative

estimates of cluster means and assigns each indi-
vidual to the mean to which he is closest.
isodata scheme uses Euclidean distance, or

{The



modified Euclidean distance in which different
weights are assigned to the p dimensions.) The
cluster means are then re-estimated, and one
loops through the data again, reassigning the
individuals, ete., Notes the similarity to our
scheme: We start with tentative estimates of
the u's and X and assign each individual to the
mean to which he is closest, using Mahalanobis
distance in the metric of the tentatively esti-
mated covariance matrix. The u's and I are then
re-estimated, the individuals (pixels) are re-
allocated to clusters (segments), etc.

An important difference is that our scheme
employs Manalanobis distance rather than Euclid-
ean or weighted-Euclidean distance. (It is
worth emphasizing that it is the Mahalanobis
distance based on the within-groups sum-of-
products matrix that arises here; some data
analysts use the total sum-of-products matrlx,3
which is not appropriate; see, e.g., Chernoff )

Some experiments with the algorithm, in the
context of statistical cluster analysis, are

reported in Sclove.

Relationship with the k-means procedure.
Arranging the computation a little differently,
updating the estimates of the p's and I after
each individual pixel is assigned rather than
waiting until all have been assigned, produces a
Mahalanobis-distange version of MacQueen's
k-means procedure.

4.2. Multivariate Normal Populations with
Different Covariance Matrices

The algorithm generated for this case turns
out not to be simply to use a different Manalano~
bis distance for each cluster. (The complication
which occurs is analogous to that in classifica-
tion--discriminant analysis--where one is led to
quadratic discriminant functions if the covariance
matrices differ.) The likelihood is

(2r) ™21 |5 |“9 alx.3p_,Z )/2]
1 _,i’%’__g .

ig
Equation (3.1) becomes
1 if setting =g maximizes
N 2 =1/2
| 2expl-qlx,su,02,) /21 (5.2)

9, = Iz,
0 otherwise .
Maximizing the expression in (4.2) is equivalent
to minimizing .
°? 2) :

tn|z |+ alx; s

It has been noted [see, e.g., Dayh] that in
the standard mixture model for this case the sup-
remum of the likelihood is infinity. This is
reflected in the fact that in our algorithm it
would be possible that at some stage one of the
clusters would consist of a single individual,
50 that the tentative estimate of the mean of
that group would be the vector of observations
for that individual, and the tentative estimate
of the covariance matrix of that cluster would
be undefined, It is also possible for the obser=-
vations in a given cluster to be very close to
lying on a lower-dimensional subspace, so that
the tentative estimate of the covariance matrix
could have an arbitrarily small determinant, and
the maximized likelihood could be arbitrarily
large, for the contribution of Group g to the

;72
exp| f 6

maximized likelihood is inversely proportional to
a positive power of the determinant.

5. Comparison with the Method
Based on the Standard Mixture Model

Wolfe has considered clustering based on the
standard mixture model.ll Under that model the
posterior probability that Individual i belong to
Group g is

k
m hlx8, Y my nlxgi8) - (5.1)
If we can obtaln es%lmates for 6 N ﬂg, g = 1,...,.k

they can be substituted to prov1de an estimate of
(5.1): . K )
. [y

"gh(éi’ég)/lzlnlh‘zi’éf) .
Individual i is assigned to that group g for which
the estimated posterior probability of group mem-
bership, (5.2), is largest. On the other hand,
with the conditional mixture model Individual 1
is assigned to that group g for which the estima-

ted density h{x, ,B ) is largest.

Wolfe has prsglded computer programs for the
case of normal distributions. As is well known,
the maximum likelihood equations for mixture prob-
lems are messy. He solves them by a multivariate
Newton-Raphson method of iterative solution. This
involves the assignment of arbitrary initial values
to start the iterative solution, as does the gene-
ral method described here.

6. Some Remarks on Statistical Inference

The maximum likelihood estimate of (B,T) is
the value (é,%) for which the likelihood L is
largest. The quantity L(é,é) is the corresponding
maximum value of the likelil od. To approximate
(é,%) one uses the algorithm. Let A(B,T) =

L(B,T)/L(B,T). Let F denote the large sample
c.d.f. of =2 #n A, i.e., 1imn»mPr[—22n A(B,T)<x]

= F(x). Suppose that F is independent of the true
values (B,T). E.g., it may be the c.d.f. of achi-
square distribution with an appropriate number of
degrees of freedom; it is necessary to investigate
the extent to which the large sample theory of the
generalized likelihood ratio applies when there
are incidental parameters.

6.1. Confidence Sets

Let X, denote the upper a-th percentage point
of F. Thefl 1-a = F(x ) = Pr[-2 in A(B,T) < X ]

= Pr[-2 ¢nL(B,T) < X, * 2 EnL(B T)], so that
{(B,T): =2 2nL(B,T) < x + 2 ln(B,T)} is an ap-
proximate 100(1-a)% conPidence set for (B,T).
Denote by (B,T) the estimates produced by the

algorithm. Then L(B,T) < L{B,T). Thus a conser-
vative confidence set--one that contains more
values of (B,T) than the true confidence set and
has confidence coefficient at least l-a -= is

((B,1): =2 tn L(B,T) < x ¢ 2 tn L(B,T)} .




6.2.

Some Remarks on Choice of k

The algorithm can be run with different
choices of k and the results compared. Note
that the likelihood function is a different
function for different values of k. Denote
this dependence upon k by writing the likelihood
as Lk(Bk’Tk)' Let Bk’ Tk denote the maximum like-
linood estimates for fixed k. Following Wolfe's
approach for the standard mixture model, one
might make a sequence of hypothesis tests to

decide on k, first comparing LQ(BQ,T ) with
a (=4

. 2 PO
B . .
L3( 3,T3), then if necessary comparing L3(B3,T3)

with Lh(Bh’Th)’ etc. Wolfe uses the asymptotic

chi-square distribution of the generalized likeli-
hood ratio here; even in the context of the stan-

dard mixture model this may not be the asymptotic

distribution.

An alternative approach to choice of k is to
follow MacQueen's suggestion of introducing re-
finement and coarsening parameters R and C such
that two clusters join when their mean vectors
are less than R units apart %nd a cluster splits
when its diameter exceeds C.

7. Conclusions

A modification of the usual mixture model has
been employed to provide a probability framework
for clustering/segmentation problems. A general
method of producing algorithms which correspond
to a method of iterated maximum likelihood has
been given. The general method given here is
plausible, is linked to a probability model, and
is easy to program. In the case of multivariate
normal distributions with common covariance matrix
the general method produces schemes which can be
viewed as improved versions of some existing
schemes.

The focus here has been on the parametric
case, but the methods discussed might be applied
to the nonparametric case by estimating the
p.d.f's hg(i) as the clustering proceeds, using

standard methoas of density estimation.

Algorithms based on a likelihood function are
based on the raw data matrix, in contrast to many
clustering procedures which are based on a matrix
of pairwise similarities or distances. The latter
procedures have the advantage of applicability to
problems where a raw data matrix is not available.
When the raw data are available, such algorithms
have the theoretical disadvantage of not extrac-
ting all the information from the observations
and the computational disadvantage of preliminary
computation of all the pairwise distances {or
similarities).

Alternative models for image segmentation.
The focus here has been on a model in which the
segment-identification (pixel-classification)
parameters 6, are treated as functionally indepen=
dent. In the standard mixture model they become
random variables and are treated as statistically
independent. To Assumptions (1) and (2) of Sec. 1
it seems reasonable to add

Assumption (2). FEach segment consists of more

than one pixel.

4

As a corollary to this assumption, it follows that
the gi's are functionally related, in as much as

each Qi must be equal to one of its eight neigh-

bors. It would be interesting to study the prob-
lem resulting from maximizing the likelihood func-
tion under this condition. Alternatively, if the
Qi's are then treated as random, they would be

a two-dimensional Markov process. It will be
interesting to study the problem of estimating
them in this model.
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